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SUMMARY

A new algorithm for volume tracking which is based on the concept of flux-corrected transport (FCT) is
introduced. It is applicable to incompressible 2D flow simulations on finite volume and difference meshes. The
method requires no explicit interface reconstruction, is direction-split and can be extended to 3D and orthogonal
curvilinear meshes in a straightforward manner. A comparison of the new scheme against well-known existing
2D finite volume techniques is undertaken. A series of progressively more difficult advection tests is used to test
the accuracy of each scheme and it is seen that simple advection tests are inadequate indicators of the
performance of volume-tracking methods. A straightforward methodology is presented that allows more rigorous
estimates to be made of the error in volume advection and coupled volume and momentum advection in real flow
situations. The volume advection schemes are put to a final test in the case of Rayleigh–Taylor instability.
# 1997 by CSIRO.
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1. INTRODUCTION

In the numerical computation of multifluid problems such as density currents or Rayleigh–Taylor
instability there is a need for an accurate representation of the interface separating two immiscible
fluids. Free surface flows such as water waves and splashing droplets are an approximation to the
multifluid problem in which one of the fluids (usually a gas) is neglected as having an insignificant
influence on the dynamics of the system. In a general free surface flow problem, fluid coalescence and
detachment may occur and deforming meshes cannot be used. In this case the need of an accurate and
sharp interface is even greater than in true multifluid computations. Although a slightly diffuse
interface may be acceptable in a problem where the continuity, momentum and energy equations are
solved throughout the entire mesh, in a free surface simulation the location of the interface
determines the size and shape of the computational domain and specifies where boundary conditions
must be applied. In this case a diffuse interface cannot be tolerated.

On finite volume (or difference) meshes, standard advection techniques can be used in multifluid
problems to advect either the density or a material indicator function, however these methods are
either diffusive (e.g. first order upwinding) or unstable (higher order schemes in which unphysical
oscillations appear in the vicinity of the interface). Numerous techniques have been devised to limit
the diffusiveness of low order schemes and to minimize the instability of high order schemes (see e.g.
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References 1–5). However, none of these techniques can guarantee the sharp, non-oscillatory
interfaces that are desirable in immiscible multifluid flow simulations and essential in free surface
problems on stationary meshes.

The earliest numerical technique designed specifically for simulating complicated free surface
flows was the well-known marker and cell (MAC) method.6 In MAC, Lagrangian marker particles are
advected with the local fluid velocity and their distribution determines the instantaneous fluid
configuration. Although the MAC method allows arbitrary free surface problems to be tackled,
difficulties arise in the particle representation of the fluid. Because the number density of particles is
finite (and typically fairly low), false regions of void can be created in flows with high shear (and
hence high fluid extension). It is also difficult to obtain good quantitative information on interface
orientation or partial cell volumes from the marker particles, and free surface boundary conditions
(especially pressure) are problematic. They are applied in an approximate way that often leads to
instability at the free surface.7 Although some of these problems can be ameliorated by ensuring that
each cell contains a large number of markers, significant computational overheads subsequently
result.

The inclusion of a special set of surface marker particles7 can also overcome some of these
problems in two dimensions at the expense of making the application of the method less general.
Extending this concept to 3D flows is possible, but not easily undertaken, and the logical difficulties
that arise when two surfaces collide (enclosing surface fluid in the fluid interior) are algorithmically
difficult to resolve.

For interfaces that remain single-valued with respect to one of the co-ordinate directions, the use of
a height function (see e.g. Reference 8) in which the distance of the interface above a reference level
is calculated offers a simple and robust method for simulating interfacial flow in both two and three
dimensions. However, the restriction to single valued interfaces rules out a wide class of interesting
and important problems.

Several volume advection techniques for finite volume and difference meshes have been developed
with the aim of maintaining very sharp interfaces. The better known are the simplified line interface
calculation (SLIC) method of Noh and Woodward,9 the volume of fluid (VOF) method due to Hirt
and Nichols10 and the method of Youngs.11 These methods are part of the focus of this paper and
their discussion is left to Section 3.

There are other methods for calculating interfacial flows. A recent interface tracking scheme is that
of Unverdi and Tryggvason,12 in which the Lagrangian interface (represented by a set of connected
line segments) is used to reconstruct a representation of the density field on a Eulerian mesh.
However, the interface is spread over three or four mesh cells and the method is less straightforward
than volume tracking with the necessity of solving an elliptic equation forC, and considerable logical
overhead required in remeshing the interface as it becomes distorted. Another approach is the level
set approach of Sussmanet al.13 However, the level set methodology does not guarantee volume
conservation14 in highly distorted flows and this can give rise to unacceptable errors in the method. A
comparison of some of these other techniques with VOF methods was recently undertaken by Rider
and co-workers.14,15

In this paper, only volume-tracking methods are considered and no further mention will be made of
interface tracking or level set methodologies.

2. FCT-VOF

In volume tracking schemes a fractional volume or ‘colour’ functionC is defined that indicates the
fraction of a mesh cell that is filled with fluid of a particular type. Problems involvingM fluids require
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M ÿ 1 colour functions. Algorithms for volume tracking have been designed to solve the advection
equation

@C

@t
� H ? �UC� � 0 �1�

in a way that keeps interfaces sharp. Regular advection techniques (even those using flux-corrected
transport) rapidly smear the interface over at least three or four mesh cells.

In the donor–acceptor scheme of Hirt and Nichols10 a combination of first order up and down-wind
fluxes is used to advectC. Following Hirt,16 first-order upwind fluxes in 1D on a uniform staggered
mesh can be shown to have an effective diffusion error term with coefficient
kup � 0�5�dxjU j ÿ dtU2

� (from which a Courant number of unity is seen to be the maximum for
stability). In contrast, first-order downwinding is unstable, having an effective diffusion term with
coefficient kdn � ÿ0�5�dxjU j ÿ dtU2

� � ÿkup. Although unstable, the downwind scheme has the
advantage of maintaining sharp interfaces,17 which is one requirement needed to maintain a good
interface representation. Thus, if a suitable combination of up and downwind fluxes can be
formulated that eliminates both the diffusiveness of the upwind scheme and the instability of the
downwind scheme, a volume tracking algorithm can be designed. One algorithm that does both is
Zalesak’s flux-corrected transport.4

The idea of adjusting fluxes calculated with a high order (non-monotonic) advection scheme to
improve the monotonicity of the final result was introduced by Boris and Book3 and was generalized
and extended to multidimensions by Zalesak.4 The basic idea involves several stages of calculation.
First, an intermediate value ofC �C*� is determined using a monotonic (and hence diffusive)
advection scheme. The scheme for solving the one-dimensional version of equation (1) (for mesh cell
i) is written symbolically as

Ci* � Cn
i ÿ

1

dx
�FL

i�1=2 ÿ FL
iÿ1=2�; �2�

whereFL represents the low-order flux. An anti-diffusive flux is then defined that attempts to correct
the numerical diffusion resulting from the low order scheme. An initial estimate of the antidiffusive
fluxes �FA

i�1=2� is given by the difference between the high and low order flux approximations:

FA
i�1=2 � FH

i�1=2 ÿ FL
i�1=2: �3�

Application of the entire antidiffusive flux would simply result in the high order (unstable) flux being
used, thus correction factorsq are introduced that limit the anti-diffusive fluxes. The correction
factors are calculated to ensure that no new extrema are introduced into the solution after application
of the anti-diffusive fluxes. The minimum and maximum values allowed for a mesh celli are based
on theCn andC* in cell i and its two neighbours,i ÿ 1 and i � 1. Details of the procedure used to
limit the fluxes are described in Reference 4 and are not discussed here. The final step of Zalesak’s
FCT is to apply the corrected anti-diffusive fluxes and obtain the values ofC at the new time:

Cn�1
i � Ci* ÿ

�qi�1=2FA
i�1=2 ÿ qiÿ1=2FA

iÿ1=2�

dx
: �4�

2.1. 1.D FCT-VOF

In FCT-VOF theFL are calculated using first-order upwinding. For the flux ati � 1
2,

FL
i�1=2 �

Ui�1=2dtCi if Ui�1=2 5 0;
Ui�1=2dtCi�1 if Ui�1=2 < 0:

�

�5�
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Instead of using a high order method to calculate theFH, the flux calculation used in the donor-
acceptor scheme10 and the stability analysis in the manner of Hirt16 suggest that theFH could instead
be calculated using a first-order downwind scheme:

FH
i�1=2 �

Ui�1=2dtCi�1 if Ui�1=2 5 0;
Ui�1=2dtCi if Ui�1=2 < 0:

�

�6�

The initial guess for the antidiffusive flux is given byFA
� FH

ÿ FL. The FA are limited as
described in Reference 4 and then applied to the intermediate values ofC. (The one difference in the
limiting procedure in FCT-VOF is that the min=max values are also constrained to lie in the range
[0,1] to ensure that round-off does not introduce boundedness problems.) The upwind scheme (with
an effective diffusion coefficientkup) will introduce sufficient numerical diffusion to counteract the
instability of the downwind fluxes (with effective diffusion coefficientÿkup).

The transport of a 1D step function by a uniform 1D velocity field using FCT-VOF is shown in
Figure 1. Clearly, the integrity of the step function shape is maintained. In addition, the velocity of
the interface is exact. For this simple test problem (one-dimensional volume tracking) FCT-VOF
delivers an exact solution down to mesh resolution.

2.2. Multi-dimensional FCT-VOF

There are two ways in which the one-dimensional scheme can be extended to multidimensions.The
first is by use of Zalesak’s fully multidimensional FCT algorithm and the second is a direction split
implementation.

In Zalesak’s multidimensional scheme the ‘advected and diffused’ estimate ofC �C*� is calculated
by multidimensional fluxing using the low order scheme. The antidiffusive fluxes are estimated as
usual and are then limited using theCn andC* in the five-neighbourhood of the cell. This scheme
was implemented here to give a two-dimensional FCT-VOF, however, the results proved to be
unsatisfactory. An example is the advection of a 2D step function in a uniform velocity field as shown
in Figure 2. Even though the interface remains extremely thin, the interface shape is not maintained.
The primary source of error in the multidimensional scheme arises from the flux limiting, in which
the direction of the major component of the diffusive error cannot be determined. Possible ways of
improving the multidimensional algorithm are currently under investigation.

Figure 1. Advection of a step function in one dimension using FCT-VOF. From left to right: initial conditions and solutions
after 250 and 500 time steps
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In practice, direction split FCT-VOF gives superior results. In two dimensions this involves
sweeping the entire mesh in thex-direction with the 1D algorithm, updatingC and following with a
sweep in they-direction. The order of thex- andy-direction sweeps is interchanged each time step to
avoid the introduction of systematic error. Direction splitting introduces a problem not found in the
multidimensional algorithm. After the first sweep it is possible that void fractions greater than unity
may result. Such cells create a problem in the second half of the sweep, because the new fluxes will
be calculated using theseC values. Cells in the interior of the fluid may then attain values less than
unity, which is clearly incorrect. There are several ways of overcoming this problem. In the approach
used here, allowance is made for the effective change in volume of a cell during each one-
dimensional sweep of the mesh. DefiningdVi; j to be the volume of cell�i; j�, at the beginning of each
time-step setdVi; j � dxdy. Then for anx-sweep of the mesh calculate

~Ci; j � Cn
i; jdV n

i; j ÿ �Fx
i�1=2;j ÿ Fx

iÿ1=2;j�;

dV n�1=2
i; j � dV n

i; j ÿ dtdy�Ui�1=2;j ÿ Uiÿ1=2;j�;

Cn�1=2
i; j �

~Ci; j

dV n�1=2
i; j

:

�7�

An equivalent set of steps is then performed in they-sweep. After the two direction sweeps,dVi; j

should again be equal todxdy and any discrepancy is equal to the error in satisfying the divergence
condition,H ? U � 0. To second order in time this procedure is equivalent to solving

@C

@t
�
@UC

dx
� C

@U

@x

in the x-direction, with a similar equation holding in they-direction.
It is also extremely important to account for the effective cell volume change that occurs in each

one-directional sweep when calculating the low-order diffused solutionC*. If this is not done, the
integrity of the method is severely degraded. There is one final correction that is used in FCT-VOF. It
is observed that small round-off errors can accumulate and affect the boundedness of the solution
after a few hundred time steps. If, after every time step, negativeC-values are set to 0�0 and any
greater than 1�0 are set to unity, this problem does not arise. However, if such aprocedure is not

Figure 2. Advection of a square step function using fully multidimensional FCT-VOF

VOLUME-TRACKING METHODS 675

# 1997 by CSIRO INT. J. NUMER. METHODS FLUIDS, VOL24: 671–691 (1997)



implemented, values ofC used to calculate both up and down wind fluxes must be limited to lie in the
range [0,1].

3. A SUMMARY OF OTHER TECHNIQUES

There are many techniques for advecting scalars (and hence fluid volume). The ones considered here
are those that have been designed specifically for use in multifluid problems and that allow interfaces
to be kept extremely sharp. Although the choice of schemes is limited below to three well-known
ones, there are other possibilities (see e.g. References 18 and 19). Because all the schemes examined
here are direction split, the correction for cell volume change, equation (7), is applied in each of them.
A brief discussion of the three other techniques used in this paper is now given.

3.1. SLIC

In the SLIC method of Noh and Woodward9 the interface in a cell is reconstructed using a straight
line parallel to one of the co-ordinate directions. It is a direction-split algorithm and during each
direction sweep, only cell neighbours in the sweep direction are used to determine the interface
reconstruction. For the case of only two fluids there are nine possible interface cell configurations,
which reduce to three basic cases as far as flux determination is concerned. (For details see Reference
9, the three basic cases here correspond to types I, II and III in that paper.) Because the interface
reconstruction only looks at neighbours in the flux direction, an interface cell can (and often does)
have a different representation for each direction sweep. This is illustrated in Figures 3(b) and 3(c),
which show the reconstructions used for anx-sweep andy-sweep of the interface configuration shown
in Figure 3(a). Once the approximate interface reconstruction has been made, fluxes of volume for
each material are calculated geometrically.

Figure 3. Interface reconstructions of actual fluid configuration shown in (a): (b,c) SLIC (x- andy-sweep respectively); (d) Hirt–
Nichols’ VOF; (e) Young’s method
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3.2. Hirt–Nichols’ VOF

The original VOF method was described by Hirt and Nichols.10 It uses an approximate interface
reconstruction that, like SLIC, is parallel to one of the co-ordinate axes. Unlike SLIC, cells in a nine-
neighbourhood are used to estimate the surface normal, and the interface is specified as horizontal or
vertical depending on the relative magnitudes of the surface normal components. Figure 3(d) shows
the VOF reconstruction of the fluid configuration seen in Figure 3(a).

For fluxes in a direction parallel to the approximate interface reconstruction, upwind fluxes are
used. For fluxes in a direction perpendicular to the interface, donor–acceptor fluxes are used. As an
example of the donor–acceptor scheme, consider the fluid configuration shown in Figure 4, with a
positivex-velocity at i � 1

2. The interface reconstruction in cell�i; j� is vertical; cell�i; j� is partially
filled, as is the downwind cell�i � 1; j� (andCi; j > Ci�1;j�. The donor–acceptor scheme calculates the
flux of volume across�i � 1

2 ; jk� as

Fi�1=2;j � dyfMIN�Ci; jdx;Ui�1=2;jCi�1;jdt � MAX�0�0;Ui�1=2;j�1�0 ÿ Ci�1;j�dt ÿ �1�0 ÿ Ci; j�dx��g:

�8�

The four components of the right-hand side of equation (8) are:

(a) Ci; jdx, the maximum amount of fluid available for fluxing out of cell�i; j�
(b) Ui�1=2; jCi�1;jdt, the downwind estimate of theC flux
(c) Ui�1=2; j�1�0 ÿ Ci�1;j�dt, the downwind estimate of the void flux
(d) �1�0 ÿ Ci; j�dx, the maximum amount of void that can be fluxed out of cell�i; j�.

The MIN function ensures that no more fluid is fluxed out of cell�i; j� through the side at�i � 1
2 ; j�

than exists inside the cell. When fluid is fluxed out of the cell, implicitly void is also fluxed out and
the MAX function ensures that no more void is fluxed out of cell�i; j� than exists there.

The scheme uses first-order up and downwind fluxes combined in such a way as to ensure stability
at the same time as minimizing diffusion. As such, the method can be interpreted as a flux-corrected
transport algorithm. In terms of Zalesak’s FCT the downwind flux of fluid is the non-monotonic flux
that must be limited to ensure that no new extrema are created in the cell. The MIN and MAX
functions perform the flux-limiting role.

In the original VOF paper10 no discussion about direction splitting the algorithm was given. Both a
multidimensional and a direction-split algorithm were initially implemented here. The multi-
dimensional algorithm resulted in appreciable volume error and the ‘shedding’ of many isolated blobs
of ‘flotsam’ and ‘jetsam’—it is not considered further and the direction-split algorithm is used below.

Figure 4. (a) True interface configuration and (b) interface reconstruction for Hirt–Nichols VOF
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3.3. Youngs’ method

Youngs’ VOF (Y-VOF) method uses a more accurate interface reconstruction than either Hirt–
Nichols’ VOF or SLIC. An estimate is first made of the interface orientationb. The interface within a
cell is then approximated by a straight line segment with orientationb and which cuts the cell in such
a way that the fractional fluid volume is given byCi; j. The geometry of the fluid ‘polygon’ resulting
from this reconstruction is then used to determine the fluxes through any side on which the velocity is
directed out of the cell. The method is also direction split. Very few details of the interface
reconstruction and flux calculation were given in the original paper11 and the implementation used
here is discussed in the Appendix.

The method is interesting in that it cannot be written as a functional combination of up and
downwind (or higher-order) fluxes in a simple way. There is a Lagrangian aspect to the method with
advection of geometrical ‘chunks’ of fluid through cell boundaries, although these chunks lose their
identity once they leave one cell and enter another.

4. SIMPLE ADVECTION TESTS

In this section no attempt is made to couple the advection ofC to solutions of the momentum
equations. Analytic velocity fields are chosen, which allow a comparison of the volume-tracking
schemes alone to be undertaken. Each of the methods was rigourously tested to ensure that the
implementation used here was performing correctly. All the methods have slight failings such as the
generation of jetsam or slight broadening of interfaces and the generation of void fractions outside the
range of (0,1) due to round-off errors.Ad hocfixes can be proposed to fix problems specific to each
method, although none is implemented here except to ensure that values ofC less than zero or greater
than unity are set to zero or unity respectively. This procedure is applied to all methods and results in
a volume change that is readily quantified and always found to be negligible.

Because all algorithms are direction split, equation (7) is applied to all methods to ensure that cells
cannot overfill during one direction sweep of the mesh.

4.1. Constant, unidirectional velocity field

The simplest two-dimensional volume advection problem is that of a unidirectional velocity field.
Three different scalar fields are considered as shown in Figures (5a) amd 5(f). They are

(a) a hollow square aligned with the co-ordinate axes
(b) a hollow square at an angle of 26�57� to thex-axis
(c) a hollow circle.

In theseC contour plots (and all others below), contour levels of 0�025, 0�5 and 0�975 are displayed.
Each of the three scalar fields is separately advected with two velocity fields ((0,1) and (2,1)) and the
six combinations together encompass most combinations of interface alignment, curvature and flux
direction that may arise in such a simple problem.The mesh size is 2006 200, the exterior extent of
each of the shapes is initially 40 mesh cells and the distance between the outer and inner interface is
10 mesh cells. The mesh Courant number is 0�25 and advection proceeds for approximately 500 time
steps in each case.

The results of advecting these three scalar fields with the two velocity fields are shown in Figures
5(b) and 5(g) for SLIC, Figures 5(c) and 5(h) for Hirt–Nichols’ VOF, Figures 5(d) and 5(i) for FCT-
VOF and Figures 5(e) and 5(i) for Youngs’ method. (For each method and velocity field the results
for each of the three scalar fields are displayed on the same figure for compactness, although they
were advected separately.)
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SLIC maintains good interface shape in all cases in which advection is aligned with a co-ordinate
direction (Figure 5(b)) but is unacceptably poor when advection is inclined to the co-ordinate axes
(Figure 5(g)). This is particularly obvious in advection of a co-ordinate-aligned square, which
develops large interfacial ripples with an amplitude of several mesh cells. Interface disturbances start
at the upwind corner of the square and propagate along the sides.

Hirt–Nichols’ VOF (Figures 5(c) and 5(h)) only produced good results for the co-ordinate-aligned
square advected in a co-ordinate direction, in all other cases there was significant interface distortion
and some interface spreading. (The spreading could be alleviated withad-hoccorrections such as
those suggested by Hirt and Nichols.10) The somewhat poorer performance of Hirt–Nichols’ VOF
(compared with SLIC) is surprising considering that the interface reconstruction is multidimensional
(even though the flux calculation is direction-split).

FCT-VOF performs well in most cases, the exceptions being the angled square for both velocity
fields (Figures 5(d) and 5(i)). The appearance of jetsam and voids seen in Figure 5(d) highlights the
inability of FCT-VOF to handle thin regions of fluid—in this case the corners of the square which are
initially only one mesh cell wide. The use of downwind fluxes and the limiting procedure in FCT-

Figure 5. Advection with unidirectional velocity fields (1,0) (top) and (2,1) (bottom). At the left are the initial conditions (I.C.)
followed by the results for SLIC, Hirt–Nichols’ VOF, FCT-VOF and Youngs’ method
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VOF always ensures that regions of fluid only one cell thick in a particular direction will not be
advected in that direction and will thus remain stranded on the mesh.Ad hoccorrections for this
problem could probably be implemented, however it is not reasonable to expect regions of fluid
equivalent in size to the mesh resolution to be handled in a physically meaningful way by any
numerical scheme. Advection of the co-ordinate-aligned square and circle with both velocity fields
results in acceptably good interface shape and thickness.

Youngs’ method gives the most consistent results as far is interface shape is concerned (Figures
5(e) and 5(g)), although the case handled best by the other three methods (the co-ordinate-aligned
square advected in a co-ordinate direction, Figure 5(e)) is not handled quite as well by Youngs’
method (although the error is very small). The method also gives rise to rounding of sharp corners
(seen particularly in Figure 5g), but once again this is not unexpected, as the singularity existing at
sharp corners cannot be satisfactorily resolved by any Eulerian numerical scheme.

The solution error is quantified by defining

E �

P

i; j
kCn

i; j ÿ Ce
i; jk

P

i; j
C0

i; j

; �9�

whereCn is the calculated solution aftern time-steps,Ce is the exact solution aftern time-steps
(which is easily determined with such simple velocity fields) andC0 is the initial solution.

Solution errors for each of the three scalar fields, two advecting velocities and four methods are
shown in Table I. Although there is no consistent pattern to the errors, the table shows that Y-VOF is
superior to SLIC and Hirt–Nichols’ VOF in all cases but one, and superior to FCT-VOF in all cases
but two. In general the error in FCT-VOF is about one-third that of SLIC and Hirt–Nichols’ VOF, but
about twice as poor as Y-VOF. Thus these tests indicate that the piecewise linear interface
reconstruction (sometimes termed PLIC14) used in Youngs’ method in conjunction with
geometrically calculated fluxes gives the best volume tracking performance in simple unidirectional
advection problems.

4.2. Solid body rotation

Zalesak’s problem,4 in which a slotted circle is rotated through one or more revolutions, is widely
used as a test of scalar advection methods. In the version used here, the mesh size is 2006200
(physical dimensions 4�064�0), the diameter of the slotted circle is 50 mesh cells and the slot width
is six mesh cells. The axis of rotation is the centre of the computational domain (2�0, 2�0) and the
circle centre is initially at (2�0, 2�75). The initial conditions are shown in Figure 6. The velocity field
has a magnitude of 1�0 at the middle of the domain edges, the Courant number is 0�25 and one
rotation corresponds to 2524 time steps.

Table I. Errors for unidirectional velocity fields

Velocity Scalar field SLIC Hirt–Nichols FCT-VOF Youngs

(1,0) Square (0�) 8�426 1078 1�0361078 3�8961078 1�086 1073

Square (26�75�) 1�466 1072 6�9161072 2�3261072 5�356 1073

Circle 1�306 1072 4�5561072 1�2861072 3�086 1073

(2,1) Square (0�) 1�326 1071 6�8661073 1�6361078 2�586 1072

Square (26�57�) 1�086 1071 1�6061071 8�1561072 3�166 1072

Circle 9�186 1072 1�9061071 3�9961072 2�986 1072
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Results after one rotation are shown in Figure 6 for each of the four methods, and errors are
presented in Table II. Both SLIC and Hirt–Nichols’ VOF generate quantities of jetsam and both give
quite poor interface shapes after one rotation. Hirt–Nichols’ VOF also shows some slight spreading of
the interface. In contrast, FCT-VOF and Youngs’ method give sharp interfaces without jetsam and
both give rise to acceptable interface shapes, although the sharp corners at both ends of the slot
become rounded. The relative magnitudes of the errors are similar to those in the previous example.

4.3. Shearing flow

As discussed by Rider and Kothe,14 an incomplete assessment of the integrity of volume tracking
methods is given using simple translation and rotation tests because of a lack of topological change in
the solution. The velocity fields used in Sections 4�1 and 4�2 satisfy not onlyH ? U � 0�0 but also
@U=@x � 0�0 and @V=@y � 0�0. Thus the shape of the fluid region does not deform during its
advection. Even with such restrictive constraints on the velocity field, it is seen that achievement of
good translation and rotation of a step function on a Eulerian mesh is still a difficult task. In realistic
problems the situation is far more complicated, with stretching, shearing, fluid merging and break-up
all possible in a flow. The key element missing from translation and rotation tests is the presence of
fluid shear; in this subsection, shear is introduced into the velocity field.

Figure 6. Zalesak’s test problem for solid body rotation:C contours for initial conditions (I.C.) and results after one rotation for
each of four schemes

Table II. Errors for Zalesak’s solid body rotation test after one roation

SLIC Hirt–Nichols FCT-VOF Youngs

8�386 1072 9�626 1072 3�2961072 1�0961072
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The following simple velocity field is chosen:

U�x; y� � cos�x� sin�y�; V �x; y� � ÿ sin�x� cos�y�;

with x; y;2 �0; p�. The mesh size is 1006100. The simulation is integrated forward in time forN
steps (with a Courant number of 0�25) before reversing the sign of the velocity field and integrating
for an additional N steps—a perfect advection scheme would return the initialC configuration. The
initial condition is a circle of radiusp=5. The shapes after forward and reverse integration for
N� 1000 and 2000 time steps are shown in Figures 7(a)–7(d). Errors forN� 250, 500, 1000 and
2000 are presented in Table III.

Figure 7. Results for shearing field: (a) after 1000 steps forward; (b) after 1000 steps forward followed by 1000 steps backward;
(c) after 2000 steps forward; (d) after 2000 steps forward followed by 2000 steps backward
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For N 4 10000, FCT-VOF maintains a slight advantage over both SLIC and Hirt–Nichols’ VOF,
although by a smaller margin than in the simple advection tests in sections 4.1 and 4.2. The clear
winner is Youngs’ method which is up to an order of magnitude more accurate for allN. For
N� 2000 all methods have begun to break down because the shearing flow has started to stretch the
fluid circle into thin filaments only one or two cells wide. Because the mesh is unable to represent the
C configuration accurately by this time, it would be fortuitous if any method were able to
satisfactorily integrate backward in time and obtain the original solution. Notably, Youngs’method
does a fairly good job nevertheless.

On the basis of the simple advection problems discussed previously, FCT-VOF appeared to be a
suitable alternative to both SLIC and Hirt–Nichols’ VOF, with better interface shapes and errors
typically three times smaller. Although FCT-VOF still outperforms both here, the advantages are less
clear, with all methods except Youngs’ having severe problems returning the initial interface for
N > 1000. It is seen in this example that after the application of a significant period of shearing, all
methods break down to an unacceptable level. Although this is due in part to the inability of the mesh
to resolve the fine features of the interface, it reinforces the point that simple advection tests are
inadequate when determining the performance of volume-tracking methods.

4.4. Efficiency and order of accuracy

Because the advection ofC typically consumes only a small percentage of a fully coupled Navier–
Stokes solution for interfacial flow problems, the efficiency ofC-advection is often not a primary
concern. For completeness the CPU time taken for each of the cases above was compared. The
average for each case (normalized to the time for SLIC) is shown in Table IV.

The shearing flow example considered in section was run with several different spatial resolutions
and several different time steps. As expected, each of the volume advection schemes considered here
is first order in both time and space.

5. A REAL PROBLEM: RAYLEIGH–TAYLOR INSTABILITY

Advection tests such as the ones described above give an indication of the robustness and accuracy of
a volume tracking method, however it is seen that considering just one or two of the tests in isolation
does not give a good picture of the strengths and, more importantly, the weaknesses of a method—

Table IV. Relative CPU time for each method in simple
advection test

SLIC Hirt–Nichols FCT-VOF Youngs

1�0 1�5 4�0 3�3

Table III. Errors for shearing flow

N SLIC Hirt–Nichols FCT-VOF Y-VOF

250 2�726 1072 3�246 1072 1�9461072 2�6161073

500 3�306 1072 4�006 1072 2�3561072 5�1261073

1000 4�596 1072 6�666 1072 3�1461072 8�6061073

2000 9�026 1072 1�096 1071 1�4461071 3�8561072
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many different combinations of interface shape, orientation and advection velocity field should be
considered.

Because of the difficulty of ensuring that an analytic velocity field will include the degree of
complexity encountered in practical situations, a real flow is now considered. An additional problem
with the advection tests above is that they may give an indication of the error of passive scalar
advection, but when the scalar is dynamically coupled to the momentum solution, errors in scalar
advection will result in errors in momentum advection. The feedback of these two errors may totally
destroy a solution. The difficulty in testing in real flow situations is that generally there are no
analytic solutions available and it is difficult to estimate the error arising from use of a scheme. A
methodology is suggested here that will give both an error associated with the coupled integration of
a non-passiveC and momentum, and also an error associated with the advection ofC alone.

Because Youngs’ method was the most accurate method in all the test problems above, it was used
to advectC in a high resolution solution of the full set of (scaled) momentum equations

@C

@t
� H ? �UC� � 0; �10�

r � r1C � r2�1�0 ÿ C�; �11�

@rU
@t

� H ? �rUU� � ÿHP �
1

Fr2
rĝ �

1
Re
H ? t; �12�

H ? U � 0 �13�

The high-resolution solution is then considered to be the ‘exact’ solution (Ce) for the problem. To
obtain an estimate of the error in the forward integration of the coupled scalar and momentum
advection equations, equations (10)–(13) were solved using each of the four volume advection
schemes at a coarse resolution. The high resolution solution is then averaged to obtain an estimate of
the exact solution at the coarse resolution, and the error is calculated as in equation (9). This provides
an error estimate of the coupled solution.

To obtain an estimate of the error in justC advection using each of the schemes, the calculated
velocity fields used to advectC at each time step are saved to form a time series. The finalC field is
then used as an initial condition for a reverse time integration ofC. Each of the velocity fields is read
in turn, reversed in direction and used to integrateC back one time step toward the beginning of the
fully coupled simulation. In the absence of anyC advection errors, theC field that results after
advecting backward should be identical with the initial condition. Any difference is an indication of
the error inC advection alone. Although this requires a large number of velocity fields to be stored, it
is a good test of a volume advection scheme in a real flow situation.

The example chosen here is that of Rayleigh–Taylor instability. This is a good example to test the
effect of coupledC and momentum transport, because the flow is density-driven and errors in theC
field will lead to errors in the momentum solution via equation (11). The domain is a rectangular box
of physical dimensions 1�063�0. The coarse solutions are obtained with a mesh resolution of
646192 and the ‘exact’ solution is obtained on a 1926 576 mesh. Initially the top one-third of the
domain is filled with fluid of densityr1 � 1�2 �C � 1�0� and the lower two-thirds is filled with fluid
of densityr2 � 1�C � 0�0�. The Froude number�Fr � U=

p
�gL�� is 0�5 and Reynolds number is

500. A perturbation is applied to the initialC distribution with amplitude 0�02 and half wavelength
1�0 (see Figure 10(e)). The scheme used to solve equations (10)–(13) is based on the MAC method,6

uses flux-limited third-order differences for the advective operator, centred differences for diffusion
and a multigrid pressure correction projection, and is second order in time everywhere except for C
advection which is first order in time. A maximum mesh Courant number of 0�25 was used in the time
integration and the solution was integrated forward in all cases to a dimensionless time of 8�0, which
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corresponds to approximately 1340 time steps. The integration time was primarily determined by disk
storage constraints for the velocity fields needed in the time series. By timet� 8�0, the solution was
sufficiently distorted to present a severe test of volume advection schemes. Boundary conditions are
no-slip except forx� 0 which is an axis of symmetry.

The coarse solutions at timest � 4:0; 6:0 and 8:0 for SLIC, Hirt-Nichols’ VOF, FCT-VOF and
Youngs’ method are compared with the exact solution (contoured at the fine resolution) in Figures
8(a)–8(e). After an initial linear growth period a plume forms which descends into the lower layer,
forming a plume cap that has started to roll up by timet� 6�0. By time t� 8�0, the cap has wrapped
around itself twice and a secondary sidewise plume has developed at the top right of the flow. Not
surprisingly, Youngs’ method compares very well with the high resolution ‘exact’ solution. A little
more surprising perhaps is that the other three methods result in quite similar solutions. The early
linear growth rate of the instability is identical in all cases. The later non-linear growth of the dense
plume cap as it penetrates the lower layer and rolls up also proceeds very similarly for each case.
Apart from features that cannot be resolved on the coarse mesh (these are most clearly seen when
comparing Youngs’method with the exact solution), the primary difference between Youngs’ and the
other coarse solutions is the development of Kelvin–Helmholtz-type instabilities on the edge of the
descending plume cap—they are clearly evident at timet� 8�0 in all three other solutions. These
instabilities are all numerical in nature (and are quite different for each of SLIC, Hirt–Nichols’ VOF
and FCT-VOF). They result fromC advection errors that cause spurious oscillations to appear on the
interface. (Such oscillations were seen previously in Figures 5 and 6.) Although these oscillations do
not destroy the solution here, they do introduce significant error and show that coupledC and
momentum advection must be considered when volume tracking schemes are being evaluated.

Although coupledC and momentum advection made some significant differences to the final
solution in this example, there are flow situations in which spurious interface oscillations may not
adversely affect the solution because they are damped by some other mechanism (for example, in the
presence of significant surface tension or in the case of surface waves in which gravity may flatten
perturbations).

The error in forward time integration is shown in Figure 9(a) as a function of time. Although the
interface position is clearly superior for Youngs’ method, this fact is not adequately reflected in the
error estimates which show that the error is only two to three times better than the other schemes
which, at each time, all have approximately equal error. Because the error arises from bothC and
momentum advection, it is maybe not surprising that the apparently superior interface reconstruction
resulting from Youngs’ method is not reflected in the error estimates.

The error resulting from justC advection was estimated by integrating backward in time using the
time series of stored velocity fields. Initial conditions forC were theC fields at timest� 1�0,
2�0, . . . , 8�0. The error for each method as a function of time is shown in Figure 9(b). In this case,
Youngs’ method is seen to result in an order-of-magnitude less error than Hirt–Nichols’ VOF and
half-an-order less than SLIC and FCT-VOF which have similar errors. The larger errors of Hirt–
Nichols’ VOF are consistent with its inferior performance found in Section 4.1. The results of the
backward integration from timet� 8�0 are shown in Figure 10. Youngs’ method is the only method
which maintains a sharp and well-defined interface.

The results from this test case illustrate that the error arising from just the volume advection
scheme is not necessarily a good indicator of the error whenC advection is dynamically coupled to
the momentum solution. Although SLIC is able to integrate backward reasonably (albeit with the
creation of considerable jetsam), it performed worst in the forward time integration. Hirt–Nichols’
VOF and FCT-VOF were comparable in the (dynamically coupled) forward integration, yet Hirt–
Nichols’ VOF resulted in the largest volume advection errors. An indication of the errors resulting
from the dynamically coupled solution ofC and momentum cannot be reliably obtained by
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Figure 8. Rayleigh–Taylor instability at timest�4�0, 6�0 and 8�0 for each scheme. The high-resolution ‘exact’ solution is
shown at the right
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Figure 9. Error in (a) forward and (b) backward integration for Rayleigh–Taylor instability as a function of integration time

Figure 10. Results of backward integration from timet� 8�0 for Rayleigh–Taylor instability. The initial condition is
shown in (e)
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considering volume advection errors alone. Although a scheme that gives large errors in volume
advection is unlikely to give a satisfactory solution to a real problem, a scheme that gives small
volume advection errors will not necessarily give small errors to the coupled problem. The particular
weaknesses of the volume advection scheme coupled with the physical problem will determine the
ultimate utility of any scheme.The recommendation is that the application in mind must be used to
test the error in the coupled advection ofC and momentum (and hence overall solution accuracy).
Reliance onC advection tests only is insufficient.

6. CONCLUSIONS

The new technique introduced here for volume tracking (FCT-VOF) is unique in that an approximate
interface reconstruction is not required, yet extremely sharp interfaces (of the order one mesh cell) are
maintained. Despite considerable effort, the method is still inferior to the method originally proposed
by Youngs,11 although is two to three times more accurate than both the SLIC method of Noh and
Woodward9 and the original VOF method of Hirt and Nichols10 in simple advection tests. When
more realistic advection tests are considered, its utility is less clear cut. One possible advantage of the
method is that it is readily extended to three dimensions and curvilinear (orthogonal) co-ordinate
systems, which cannot be said for Youngs’ method (although both extensions appear possible). FCT-
VOF has been implemented in cylindrical coordinates20 to investigate splashing liquid droplets and
has been found to give superior results to Hirt–Nichols’ VOF.

Considering a wide range of test problems is essential when assessing the accuracy of volume
tracking schemes. As clearly seen from the variety of problems examined above, some schemes will
handle one simple test case extremely well, whilst an alternative (but equally simple case) may be
handled poorly (contrast the co-ordinate-aligned squares in Figures 5(b) and 5(g). Fluid shear is the
single most important factor to include in a flow field for test problems. Without shear the topology of
the fluid region does not change and the test is insufficient to determine a scheme’s likely usefulness
in real flow situations.

The best test is a coupled solution of theC and momentum equations under the flow conditions of
the problem being considered. A simple methodology was presented that allows an estimate to be
made of the error arising from volume advection in real flow situations. Its use is recommended when
volume advection schemes are being assessed.

APPENDIX: YOUNGS’ VOF

Although Youngs’ idea first appeared in 1982, the original paper had little detail of the methods by
which the interface was reconstructed and fluxes calculated. This appendix describes the
implementation of Youngs’ VOF technique as used in this paper.

Given an Eulerian mesh with values ofCi; j specified in each mesh cell, first-order upwind fluxes of
C are first calculated for each cell. Each cell is revisited, and if it contains part of the interface
�0 < Ci; j < 1�, the outwardYoungs fluxes must be calculated. First an estimate ofb (the angle the
interface makes with thex-axis) is made. There are several ways to determineb and here the gradient
of C is used to calculate a surface normal from whichb is determined in a straightforward manner.
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The stencil used to calculate the normal influences the accuracy of the final advection scheme and it
was found that the stencil used by Kotheet al.21 gave the best results. For a uniform mesh,

nx
i; j �

1
dx

�Ci�1; j�1 � 2Ci�1; j � Ci�1; jÿ1 ÿ Ciÿ1; j�1 ÿ 2Ciÿ1; j ÿ Ciÿ1; jÿ1�; �14�

ny
i; j �

1
dy

�Ci�1; j�1 � 2Ci; j�1 � Ciÿ1; j�1 ÿ Ci�1; jÿ1 ÿ 2Ci; jÿ1 ÿ Ciÿ1; jÿ1�; �15�

from which

b � tanÿ1 ÿnx

ny

� �

�ÿp < b4p�:

Defining the anglea to be

a � tanÿ1 dx

dy
tan b

� �

�04a4p=2�;

the interface cell can be rotated in such a way thata lies in the range0�
4a4 90�. Once this rotation

has been made, there are four possible interface configurations. They are shown in Figure 11 and
labelled cases I–IV. The following logic determines the case

if a < p=4

if C4
1
2 tan a

case I
else if C4 1�0 ÿ

1
2 tan a

case II
else

case IV
else

if C4
1
2 cot a

case I
else if C4 1�0 ÿ

1
2 cot a

case III
else

case IV.

Once the case has been determined, the four side fractions can be calculated. The side fractions are
the fractions of the top, right, bottom and left sides of the cell that lie within the fluid�st; sr; sb andsl�.
Once these are known, the fluid fluxes�Ft;Fr;Fb, andFl� can be calculated geometrically. Rather
than describe all the possibilities in detail, a summary of the flux calculations is given in Table V.

Figure 11. Four possible interface reconstructions for Youngs’ VOF
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Note that only outward fluxes from a cell are calculated and that outward velocities are defined as
being positive.
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